622 research outputs found

    Hybrid integration methods for on-chip quantum photonics

    Get PDF
    The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of nonclassical light in a phase-stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performance as single-photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this paper, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    The influence of accuracy constraints on EMG and kinetic variables during gait initiation

    Get PDF
    [Purpose] This study investigated the effects of accuracy constraints (targets) placed on the steppinglimb heel-strike (HS) on the electromyogram (EMG) and ground reaction forces (GRFs) during gait initiation. [Subjects and Methods] Twenty healthy subjects (29.2 ± 2.9 years) were asked to begin walking or stepping over a 10-cm-high obstacle at a fast speed. A 3-cm-diameter target was placed on the ground to dictate the position and accuracy of the stepping-limb HS. [Results] The results showed that the initiation velocity increase in the no-target conditions was due to modulation of the stance- and stepping-limb GRFs and a corresponding increase in the tibialis anterior (TA) activities of both limbs before stepping-limb toe-off. This was achieved by significantly increasing the stepping- and stance-limb TAEMG1 (determined between the onset of movement and time to peak anteroposterior (A-P) GRF of the stepping- and stance- limb) for the no-target conditions. It seems, therefore, that TAEMG1 and the slope to stepping-limb peak A-P GRF contributed to the intended velocity of initiation. [Conclusion] These data indicate that gait initiation and/or stepping over an obstacle may prove to be tasks by which motor control can be measured. The present study provides insight into the working mechanisms of the stepping and stance limbs and shows a clear need to further investigate whether the intact or affected limb should be used to initiate gait during rehabilitation and prosthetic training

    Quantum dots for photonic quantum information technology

    Full text link
    The generation, manipulation, storage, and detection of single photons play a central role in emerging photonic quantum information technology. Individual photons serve as flying qubits and transmit the quantum information at high speed and with low losses, for example between individual nodes of quantum networks. Due to the laws of quantum mechanics, quantum communication is fundamentally tap-proof, which explains the enormous interest in this modern information technology. On the other hand, stationary qubits or photonic states in quantum computers can potentially lead to enormous increases in performance through parallel data processing, to outperform classical computers in specific tasks when quantum advantage is achieved. Here, we discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology. In this context, QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers because they can generate single photons on-demand. Moreover, QDs are compatible with the mature semiconductor technology, so that they can be integrated comparatively easily into nanophotonic structures, which form the basis for quantum light sources and integrated photonic quantum circuits. After a thematic introduction, we present modern numerical methods and theoretical approaches to device design and the physical description of quantum dot devices. We then present modern methods and technical solutions for the epitaxial growth and for the deterministic nanoprocessing of quantum devices based on QDs. Furthermore, we present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements and discuss applications of these novel devices in photonic quantum information technology. We close with an overview of open issues and an outlook on future developments.Comment: Copyright 2023 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    Radiative Enhancement of Single Quantum Emitters in WSe2 Monolayers Using Site-Controlled Metallic Nanopillars

    Get PDF
    Plasmonic nanostructures provide an efficient way to control and enhance the radiative properties of quantum emitters. Coupling these structures to single defects in two-dimensional materials provides a particularly promising material platform to study emitter-plasmon interactions because these emitters are not embedded in a surrounding dielectric. They can therefore approach a near-field plasmonic mode to nanoscale distances, potentially enabling strong light-matter interactions. However, this coupling requires precise alignment of the emitters to the plasmonic mode of the structures, which is particularly difficult to achieve in a site-controlled structure. We present a technique to generate quantum emitters in two-dimensional tungsten diselenide coupled to site-controlled plasmonic nanopillars. The plasmonic nanopillar induces strains in the two-dimensional material which generate quantum emitters near the high-field region of the plasmonic mode. The electric field of the nanopillar mode is nearly parallel to the two-dimensional material and is therefore in the correct orientation to couple to the emitters. We demonstrate both an enhanced spontaneous emission rate and increased brightness of emitters coupled to the nanopillars. This approach may enable bright site-controlled nonclassical light sources for applications in quantum communication and optical quantum computing

    Optimization of magnetic flux density for fast MREIT conductivity imaging using multi-echo interleaved partial fourier acquisitions

    Get PDF
    BACKGROUND: Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive method for visualizing the internal conductivity and/or current density of an electrically conductive object by externally injected currents. The injected current through a pair of surface electrodes induces a magnetic flux density distribution inside the imaging object, which results in additional magnetic flux density. To measure the magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels out the systematic artifacts accumulated in phase signals and also reduces the random noise effect by doubling the measured magnetic flux density signal. For practical applications of in vivo MREIT, it is essential to reduce the scan duration maintaining spatial-resolution and sufficient contrast. In this paper, we optimize the magnetic flux density by using a fast gradient multi-echo MR pulse sequence. To recover the one component of magnetic flux density B(z), we use a coupled partial Fourier acquisitions in the interleaved sense. METHODS: To prove the proposed algorithm, we performed numerical simulations using a two-dimensional finite-element model. For a real experiment, we designed a phantom filled with a calibrated saline solution and located a rubber balloon inside the phantom. The rubber balloon was inflated by injecting the same saline solution during the MREIT imaging. We used the multi-echo fast low angle shot (FLASH) MR pulse sequence for MRI scan, which allows the reduction of measuring time without a substantial loss in image quality. RESULTS: Under the assumption of a priori phase artifact map from a reference scan, we rigorously investigated the convergence ratio of the proposed method, which was closely related with the number of measured phase encode set and the frequency range of the background field inhomogeneity. In the phantom experiment with a partial Fourier acquisition, the total scan time was less than 6 seconds to measure the magnetic flux density B(z) data with 128×128 spacial matrix size, where it required 10.24 seconds to fill the complete k-space region. CONCLUSION: Numerical simulation and experimental results demonstrated that the proposed method reduces the scanning time and provides the recovered B(z) data comparable to what we obtained by measuring complete k-space data

    Temporal shaping of single photons by engineering exciton dynamics in a single quantum dot

    Get PDF
    The majority of photonic quantum information technologies rely on single photons that have high purity and indistinguishability. Although solid-state quantum emitters can serve such single photons on demand, their asymmetric temporal and spatial mode profiles limit the optimal efficiency and fidelity of quantum interaction. Here, we demonstrate single-photon pulses at a telecom wavelength with a Gaussian-like temporal mode profile from a cavity-coupled single quantum dot. Engineering the exciton dynamics via multi-exciton cascade recombination and cavity detuning enables us to modify the rise and decay dynamics of single excitons. Furthermore, the cascade recombination process temporally retards the single-exciton emission from the background emission, leading to possible purification of single photons at high excitation power. In addition, coupling quantum dots into a low Q cavity mode leads to a Gaussian-like spatial mode profile, which brings a high collection efficiency. This approach paves the way for producing single photons with an optimized temporal and spatial waveform
    corecore